<table>
<thead>
<tr>
<th>Title</th>
<th>Topic</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Pixel</td>
<td>Imaging Devices</td>
<td>JPL</td>
</tr>
<tr>
<td>High Speed ADC</td>
<td>High Speed & Bandwidth</td>
<td>NRL</td>
</tr>
<tr>
<td>High Speed ADC</td>
<td>High Speed & Bandwidth</td>
<td>Aerospace</td>
</tr>
<tr>
<td>Advanced Solar Cells</td>
<td>Power Generation</td>
<td>NRL</td>
</tr>
<tr>
<td>Microprocessor</td>
<td>On-Board Processing</td>
<td>NRL</td>
</tr>
<tr>
<td>ULP-Solid State Recorder</td>
<td>Low Power Applications</td>
<td>UNM</td>
</tr>
<tr>
<td>ULP-Microprocessor</td>
<td>Low Power Applications</td>
<td>UNM</td>
</tr>
<tr>
<td>Data Path Pipeline</td>
<td>On-Board Processing</td>
<td>UNM</td>
</tr>
<tr>
<td>High Speed RTD/HEMT</td>
<td>High Speed & Bandwidth</td>
<td>NRL</td>
</tr>
<tr>
<td>Fault Tolerant Computing</td>
<td>On-Board Processing</td>
<td>NRL</td>
</tr>
</tbody>
</table>
Summary of Microelectronics Session

- Total of 11 Presentations Covering Multiple Topics:
 - Higher speed and Bandwidth (4/11)
 - On-Board Processing (5/11)
 - Low Power Applications (5/11)
 - Power Generation (1/11)
 - Imaging Devices (1/11)
 - Photonics (0/11)
 - MEMS (0/11)

- Common Themes
 - Verification of Ground Test Protocols
 - Validation of Models
Living with a Star: Space Environment Testbed Program Spacecraft Microelectronics Technology

<table>
<thead>
<tr>
<th>Type of Microelectronic(s):</th>
<th>Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Purpose Processor FPGA & FT Technology</td>
<td>Flight Testbed for General Purpose Computing and Fault Tolerance Technology</td>
</tr>
</tbody>
</table>

| Background: No more than 5 sentences here…. ARGOS Follow on using new hardware and new fault tolerance software |

| Description of Technology Requirement for On-Orbit Testing: |
| No more than 5 sentences here…. Be able to run multiple processors for prolonged periods with ability to uplink code. |

| Timeframe Technology is Needed: NOW |
| Timeframe Technology Maturity: Evolving in responses to new Processors |

| Benefits to LWS Applications Areas: |

| Flight Requirements: *(If known)* |
|-----------------------------|--------|
| Orbit: Flexible |
| Altitude: |
| Inclination: |
| Power: 10 W |
| Weight (kg): Few kg. (2 boards) |
| Size (cm): |
| Telemetry: |
| Environment Measurement: |

| Benefit(s): |

<table>
<thead>
<tr>
<th>Benefiting Mission(s):</th>
</tr>
</thead>
</table>

| Benefits to LWS Applications Areas: |

<table>
<thead>
<tr>
<th>Name: Kent Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone: 202-767-2506</td>
</tr>
<tr>
<td>Email:</td>
</tr>
</tbody>
</table>

| Organization: NRL Code 7621 |
Living with a Star: Space Environment Testbed Program Spacecraft Microelectronics Technology

<table>
<thead>
<tr>
<th>Type of Microelectronic(s):</th>
<th>Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC/DAC</td>
<td>High Speed ADC/DAC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Background: No more than 5 sentences here….</th>
</tr>
</thead>
<tbody>
<tr>
<td>High and width ADC/DAC Measurement Techniques & Model Verification Utilize SiGe, GaAs, InP etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description of Technology Requirement for On-Orbit Testing:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No more than 5 sentences here….</td>
</tr>
<tr>
<td>Availability of adequate power</td>
</tr>
<tr>
<td>Change Mode/Frequency of Operation</td>
</tr>
<tr>
<td>Variable Inputs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Timeframe Technology is Needed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Timeframe Technology Maturity:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Now – 4yrs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flight Requirements: (If known)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit: Variable – High Radiation Environment</td>
</tr>
<tr>
<td>Altitude: Go Through Belts</td>
</tr>
<tr>
<td>Inclination:</td>
</tr>
<tr>
<td>Power: 10W/device</td>
</tr>
<tr>
<td>Weight (kg): 400gms</td>
</tr>
<tr>
<td>Size (cm): 10x10 cm</td>
</tr>
<tr>
<td>Telemetry: Not defined.</td>
</tr>
<tr>
<td>Environment Measurement: Temp., Proton spectrum & dose LET Spectrum, Dose Rate, etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Benefiting Mission(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits to LWS Applications Areas:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name: Art Campbell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone: 202-767-9043</td>
</tr>
<tr>
<td>Email:</td>
</tr>
<tr>
<td>Organization: NRL</td>
</tr>
</tbody>
</table>
Living with a Star: Space Environment Testbed Program Spacecraft Microelectronics Technology

<table>
<thead>
<tr>
<th>Type of Microelectronic(s):</th>
<th>Title: Advanced Solar Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background: No more than 5 sentences here…. Amorphous Si, Multi-junction, Thin Films High power output, high voltage, light weight, low cost</td>
<td></td>
</tr>
<tr>
<td>Description of Technology Requirement for On-Orbit Testing: No more than 5 sentences here…. Sun Exposure</td>
<td></td>
</tr>
<tr>
<td>Timeframe Technology is Needed: 2-5 yrs</td>
<td></td>
</tr>
<tr>
<td>Timeframe Technology Maturity: 5 yrs</td>
<td></td>
</tr>
<tr>
<td>Benifiting Mission(s):</td>
<td></td>
</tr>
<tr>
<td>Benefits to LWS Applications Areas:</td>
<td></td>
</tr>
<tr>
<td>Name: Robert Walters</td>
<td></td>
</tr>
<tr>
<td>Phone: 202-767-2533</td>
<td></td>
</tr>
<tr>
<td>Email:</td>
<td></td>
</tr>
<tr>
<td>Organization: NRL Code 6820</td>
<td></td>
</tr>
</tbody>
</table>
Living with a Star: Space Environment Testbed Program Spacecraft Microelectronics Technology

<table>
<thead>
<tr>
<th>Type of Microelectronic(s):</th>
<th>Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microprocessor</td>
<td>Microprocessor Test Chip</td>
</tr>
</tbody>
</table>

Background: No more than 5 sentences here….
Custom Design, MOSIS Run, Designed to investigate mechanisms of error propagation Characterization and validation of ground test data and models

Description of Technology Requirement for On-Orbit Testing:
No more than 5 sentences here….
Radiation environment

Timeframe Technology is Needed:
NOW

Timeframe Technology Maturity:
2yrs

Flight Requirements: *(If known)*

<table>
<thead>
<tr>
<th>Orbit: Variable – High Radiation Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude: Go through belts</td>
</tr>
<tr>
<td>Inclination:</td>
</tr>
<tr>
<td>Power: 2 W</td>
</tr>
<tr>
<td>Weight (kg): 200-400 gms</td>
</tr>
<tr>
<td>Size (cm): 10x10 cm</td>
</tr>
<tr>
<td>Telemetry:</td>
</tr>
</tbody>
</table>

Environment Measurement: Temp., Proton spectrum & Dose LET Spectrum, Dose Rate, etc…

Benefiting Mission(s):

Benefits to LWS Applications Areas:

<table>
<thead>
<tr>
<th>Name: Art Campbell / Kenny Clarck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone: 202-767-9043</td>
</tr>
<tr>
<td>Email:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organization: NRL</th>
</tr>
</thead>
</table>
Living with a Star: Space Environment Testbed Program

Microelectronics Technology

<table>
<thead>
<tr>
<th>Type of Microelectronic(s):</th>
<th>Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULP/CMOS</td>
<td>Ultra Low Power Electronics</td>
</tr>
</tbody>
</table>

Background: No more than 5 sentences here….
Ultra Low Power, Radiation tolerant,
Solid State Recorder – SRAM Design w/ Error Correction
Microprocessor Suite – 8051, C50, Data Path Pipeline
Image Processor

Description of Technology Requirement for On-Orbit Testing:
No more than 5 sentences here….
Image data source to store and dump image data

Timeframe Technology is Needed:
Benefiting Mission(s): ALL LWS missions

Timeframe Technology Maturity:
Benefits to LWS Applications Areas: ALL

Flight Requirements: *(If known)*

- **Orbit:** Unspecified
- **Altitude:**
- **Inclination:**
- **Power:**
- **Weight (kg):**
- **Size (cm):**
- **Telemetry:**
- **Environment Measurement:**

- **Name:** Gary Maki
- **Phone:** 505-272-7050
- **Email:**
- **Organization:** University of New Mexico
Life with a Star: Space Environment Testbed Program Spacecraft Microelectronics Technology

<table>
<thead>
<tr>
<th>Type of Microelectronic(s):</th>
<th>Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Speed Logic</td>
<td>High Speed RTD/HEMT</td>
</tr>
</tbody>
</table>

Background: No more than 5 sentences here….
Low Power, Multi-level High Speed Logic
SEU comparison of hardened and unhardened parts
InP based, In As based

Description of Technology Requirement for On-Orbit Testing:
No more than 5 sentences here….
Undefined

<table>
<thead>
<tr>
<th>Timeframe Technology is Needed:</th>
<th>Benefits to LWS Applications Areas:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-5 yrs</td>
<td></td>
</tr>
<tr>
<td>Timeframe Technology Maturity:</td>
<td></td>
</tr>
<tr>
<td>2-6 yrs</td>
<td></td>
</tr>
</tbody>
</table>

Flight Requirements: (If known)

- Orbit: Variable – High Radiation Environment
- Altitude: Go Through Belts
- Inclination:
- Power: 2 W
- Weight (kg): 200-400 gms
- Size (cm): 10x10 cm
- Telemetry:
- Environment Measurement:

Benefiting Mission(s):

Benefits to LWS Applications Areas:

Name: Art Campbell/Dale McMorrow/B. Weaver

Phone: 202-767-8043

Email:

Organization: NRL Code 6820
Living with a Star: Space Environment Testbed Program Spacecraft Microelectronics Technology

<table>
<thead>
<tr>
<th>Type of Microelectronic(s):</th>
<th>Title: Flight Testbed for General Purpose Computing and Fault Tolerance Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Purpose Processor FPGA & FT Technology</td>
<td></td>
</tr>
</tbody>
</table>

Background: No more than 5 sentences here…. ARGOS Follow on using new hardware and new fault tolerance software

Description of Technology Requirement for On-Orbit Testing:
No more than 5 sentences here…. Be able to run multiple processors for prolonged periods with ability to uplink code.

Timeframe Technology is Needed:
NOW

Timeframe Technology Maturity:
Evolving in responses to new Processors

Benefits to LWS Applications Areas:
ALL

Benefiting Mission(s):
ALL LWS missions

Flight Requirements: *(If known)*

- **Orbit:** Flexible
- **Altitude:**
- **Inclination:**
- **Power:** 10 W
- **Weight (kg):** Few kg. (2 boards)
- **Size (cm):**
- **Telemetry:**
- **Environment Measurement:**

Name: Kent Wood

Phone: 202-767-2506

Email:

Organization: NRL Code 7621