Requirements Summary

• Interested in all environments
• Monitoring requirements depend on investigation and orbit
• Environmental factors:
 – Spectral radiation data:
 • Solar wind
 • Plasma
 • Low energy electrons and protons
 • High energy electrons and protons
 • Ultraviolet (UV)
 • Vacuum UV (VUV)
 • Soft X-rays
 – Atomic oxygen
• All missions benefit from better materials information
 – NASA, commercial, military, other government
Materials Technology Breakout Session

Materials Technology Breakout: Prioritized List

1. Ground-to-Space Correlation for Materials Degradation
2. Slow Crack Growth in Polymeric Films
3. Embrittlement of Polymers (Surface/Bulk)
4. Molecular Contamination
5. Variable Optical Property Materials
7. Atomic Oxygen/UV Radiation Synergistic Effects
8. Role of Oxygen Ions in On-Orbit Erosion (Atomic oxygen versus O+)
9. Long-Term Charging Effects on Materials
10. Composite Materials

SET-2 Requirements Workshop, Sept. 11-12, 2003
Technology #1: Ground-to-Space Correlation for Materials Degradation

• Justification for Requirement:
 – Ground tests often do not simulate the degradation that occurs in materials in the space environment
 – Need flight data to correlate to ground test data

• Correlative environment measurement requirements:
 – Spectral radiation data:
 • Low energy electrons and protons
 • High energy electrons and protons
 • Solar wind
 • Plasma
 • Ultraviolet, vacuum ultraviolet, soft X-rays
 – Atomic oxygen

• Environments of Interest: All environments
Technology #2: Slow Crack Growth in Polymeric Films

• **Issues:** The effects of the following on slow crack growth in polymeric films need to be quantified:
 – Threshold dose or load
 – Dose rate effects
 – Temperature effects (dwell and soak)
 – Load effects

• **Possible experiment techniques:**
 – Micro-Electro-Mechanical Systems (MEMS) for monitoring of materials’ properties
 – Photodetectors

• **Correlative environment measurement requirements:**
 – Monitoring is experiment/environment dependent
 – Spectral radiation data: low energy electron and proton, high energy electron and proton, solar wind, plasma, UV, VUV, soft X-rays
 – Atomic oxygen

• **Environments of interest:** All environments
Technology #3: Embrittlement of Polymers (Surface/Bulk)

• Contributions of the following effects to the embrittlement of polymers needs to be quantified:
 – Ultraviolet (UV), vacuum UV (VUV), electrons and protons, other radiation?
 – Synergistic effect with atomic oxygen (AO): flux rate effects
 – Radiation dose rate effects
 – Temperature effects
 – Load effects

• Correlative environment measurement requirements:
 – Depends upon experiment/environment
 – Spectral radiation data: low energy electron and proton, high energy electron and proton, solar wind, plasma, UV, VUV, soft X-rays
 – AO

• Environments of Interest: All environments
Technology #4: Molecular Contamination

- **Issues/possible experiment investigation requirements:**
 - Electrostatic Return
 - Photopolymerization/ fixing
 - AO scrubbing (removal) versus fixing
 - Temperature effects
 - Contamination source identification techniques
 - Effects of voltage bias on contamination rates and species

- **Correlative environment measurement requirements:**
 - Ultraviolet (UV), vacuum UV (VUV), atomic oxygen, pressure

- **Environments of interest:** All environments
 - Dose in <10 eV range
Technology #5: Variable Optical Property Materials

• **Issue:** Interactions with space environment (verify performance in space environment) for:
 – Thermochromics
 – Electrochromics
 – Photochromics
 – Micro-Electro-Mechanical louvers

• **Correlative environment measurement requirements:**
 – Obscuration due to contamination
 – Atomic oxygen
 – Ultraviolet/vacuum ultraviolet
 – Total dose

• **Environments of interest:** All environments
Technology #6: Performance Characterization of Coatings and Films in Space

• **Issue:** Need for flight qualification of coatings and films such as:
 – Atomic oxygen (AO)-durable materials (i.e., POSS)
 • Flexible AO protective coatings
 • Paintable/spray-on AO durable coatings
 • Conductive AO durable coating (ITO replacement)
 – Metal durability (vapor deposited coatings)
 – Conductive coatings
• **Correlative environment measurement requirements:**
 – Depends upon the investigation
• **Environments of interest:** LEO/GEO environments
Technology #7: Atomic Oxygen (AO)/Ultraviolet (UV) Radiation Synergistic Effects

• Issue: What are the variations in the synergistic effects of AO and UV on materials due to:
 – Solar cycle variations
 – Dose rate effects
 – AO “scrubbing” off (removal of) UV embrittlement
 – Temperature effects

• Correlative environment measurement requirements:
 – AO
 – Spectral UV and vacuum UV
 – Total dose

• Environments of interest: LEO environment
Technology #8: Role of Oxygen Ions in On-Orbit Erosion: Atomic Oxygen (AO) Versus Positively Charged Oxygen (O+)

• **Issue:** Characterize the role of oxygen ions in on-orbit materials’ erosion including:
 – Low erosion yield materials
 – Potential solar cycle variations
 – Flux rate effects
 – Temperature effects

• **Correlative environment measurement requirements:**
 – AO and O+
 – Spectral ultraviolet (UV) and vacuum UV
 – Total dose

• **Environments of interest:** LEO environment
Technology #9: Long-Term Charging Effects on Materials

• Issue: What are the long-term charging effects on materials including:
 – Thin Film Materials Effects: mechanical and optical properties
 – Flux Rate Effects on Property Changes
• Correlative environment measurement requirements are experiment/environment dependent:
 – Spectral radiation data (low energy electron and proton, high energy electron and proton, solar wind, plasma, UV, VUV, soft X-rays) AO
• Environments of interest: All environments
Technology #10: Composite Materials

• **Issue:** Performance characterization of composite materials:
 – Strength/Stiffness on-orbit
 • Synergistic effects with radiation/thermal cycling or thermal dwell
 – Radiation Shielding Integrated Composites
 • Importance increases with miniaturization and need for ultra lightweight

• **Correlative environment measurement requirements:**
 – Atomic oxygen
 – Total dose

• **Environments of interest:** All environments